Change language Go to Italian Version


>List all the bibliography
Neutron detection devices with 6LiF converter layers
Authors P. Finocchiaro, L. Cosentino, S. Lo Meo, R. Nolte, D. Radek  Year 2018
Pubblication type Paper Conference without referee
Abstract The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of art of a promising lowcost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. Several configurations were studied with the GEANT4 simulation code, and then calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.
Reference EPJ Web of Conferences 170 (2018) 01004.
WEB Reference
Research unit RADEC
Keywords Thermal neutron detectors; 3He replacement; 6LiF neutron converter; silicon detectors.
LastUpdate 05/01/2022
Related research topics
Code Topic Description

impact factor Vero

back to Home page






logo rete alta tecnologia emilia romagna

Il Laboratorio ha realizzato progetti finanziati dai Fondi europei della Regione Emilia-Romagna e dal Fondo per lo sviluppo e la coesione
Termini di uso
Politica sulla Privacy

Share this page with

LinkedIN share Facebook share share
Dichiarazione di accessibilità 6d66ae69-c6fd-4cb9-b536-be3fdfb0144c